Original Article
2005, Park, C.H., "A Study on Modeling of Compressible Turbulence: Limiters and Pressure-Strain Model," ph.D. Thesis, Depart. Aerospace. Eng., KAIST.
2009, Smirnov, P.E. and Florian, R.M., "Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term," J. Turbomach., Vol.131, No.4, 041010.
10.1115/1.30705731995, Ristorcelli, J.R., "A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence," J. Fluid Mech., Vol.347, pp.37-70.
10.1017/S00221120970060831978, Merz, R.A., Page, R.H. and Przirembel, C.E.G.,"Subsonic axisymmetric near-wake studies," AIAA J., Vol.16, No.7, pp.656-662.
10.2514/3.609541994, Herrin, J.L. and Dutton, J.C., "Supersonic base flow experiments in the near wake of a cylindrical afterbody," AIAA J., Vol.32, No.1, pp.77-83.
10.2514/3.119532005, Kawai, S. and Fujii, K., "Computational study of a supersonic base flow using hybrid turbulence methodology," AIAA J., Vol.43, No.6, pp.1265-1275.
10.2514/1.136902007, Kawai, S. and Fujii, K., "Time-series and time-averaged characteristics of subsonic to supersonic base flows," AIAA J., Vol.45, No.1, pp.289-301.
10.2514/1.246012022, Kim, D., Park, J. and Lee, S., "Compressibility Corrections to two-equation Turbulence Models for Base Flow Analysis of Projectiles," J. Comp. Flu. Eng., Vol.27, No.1, pp.32-44.
10.6112/kscfe.2022.27.1.0322022, Park, J., Kim, D. and Lee, S., "Bayesian Optimization of k-ω SST Turbulence model Closure Coefficients for Improved Predictions of Subsonic Base Pressure," J. Comp. Flu. Eng., Vol.27, No.1, pp.45-53.
2023, Kim, D., et al., "Optimized Ristorcelli's Compressibility Correction to the k-ω SST Turbulence Model for Base Flow Analysis," Int. J. Aeronaut. Space Sci., Vol.24, No.4, pp.1147-1159.
10.1007/s42405-023-00599-z2006, Lee, S. and Choi, D.W., "On coupling the Reynolds-averaged Navier-Stokes equations with two-equation turbulence model equations," Int. J. Numer. Meth. Fluids, Vol.50, pp.165-197.
10.1002/fld.10491981, Roe, P.L., "Approximate Riemann solvers, parameter vectors, and difference schemes," J. Comput. Phys., Vol.43, pp.357-372
10.1016/0021-9991(81)90128-51974, Van Leer, B., "Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme," J Comput. Phys., Vol.14, pp.361-370.
10.1016/0021-9991(74)90019-91982, Beam, R.M. and Warming, R.F., "Implicit Numerical Methods for the Compressible the Compressible Navier Stokes and Euler Equations," von Karman Institute for Fluid Dynamics Lecture Series 1982-04.
- Publisher :Korean Society for Computational Fluids Engineering
- Publisher(Ko) :한국전산유체공학회
- Journal Title :Journal of Computational Fluids Engineering
- Journal Title(Ko) :한국전산유체공학회지
- Volume : 29
- No :4
- Pages :204-216
- Received Date : 2024-10-02
- Revised Date : 2024-12-05
- Accepted Date : 2024-12-07
- DOI :https://doi.org/10.6112/kscfe.2024.29.4.204